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SUMMARY 

A number of estimates and tests for mean life and other 

parameters derived under the exponential distribution assumption 

are studied under the alternative condition that the distributio . has 

increasing (decreasing) failure rate.    The estimates considered 

are,   for the most part,   based on censored and truncated samples. 

It is shown that these estimates generally favor the producer (con- 

sumer) in the IFR (DFR) case.    Properties of order statistics and 

their spacings from distributions with increasing (decreasing) 

failure rate are presented. 
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1. fnt roduc tion.     In ,1 fundamental p^pvr  in the literature  of life 

testing  Fpstein arm Sobel  (I'^S^)  introduce   life  test  proredu.es  based 

on the exponential  distribution.      fhese  procedures,  have been codified 

in a Department  of  Defense handbook  (1960) and are now v idely em- 

ployed.     Zelen  ind  Dannemiller (I'^l) sho\<   bv s^mplin^ from Weibull 

distribution alternatives  that these procedures    are not robust in 

testinf, for mean life.     However,   as  Antelman and Savage (unpub. ) 

have pointed out they may be robust m testing for cert-.n perc entilc-s. 

For certain loss functions based on percentiles,   these procedures 

seem to be robust.     Since  statistical procedures bas^d on the ex- 

ponential distribution have a great deal of intuitive appeal and com- 

putational  simplu itv  we  investigate their  properties  relative  to 

alternative distributions having increasing failure rate (IFR) or de- 

creasing failure  rate (DFR). 

This paper v ? sent ially confirms,   theoretically and more 

generall",   the  sampling  results  of the  Zelen-Dannemiller paper for 

statistics derived under the exponential assumption.     Using Weibull 

distribution alternatives (with parameter  values which insure that 

the distribution has  increasing failure  rate)   7 elen-Dannemiller  show- 

that the use of these   statistics may  result  in  substantially  increasing 

the probability  of  iccepting  items having  poor  mean lives.     We  show 

th^t these  estimates  for  the mean are  positively (negatively) biased 

when the distribution  is  IFR  (DFR).     Also M e  obtain bounds  on the 

expected values of the  e>oonential estimates  (or the distribution 

function and bounds  on the  expected values  of the   order  statistics. 



In the last  section various properties of     IFR (DFK)      order  statis- 

tics are presentee*. 

Preliminaries.     Let    X    denote a  random variable with righf continu- 

ous distribution    F    such that    F(0   )  - 0.     If   F   has density      f     then 

r(t) =  i--j tTtTF 's 'tno,'vn a8 ^e failure rate.    Note that      r(t)   - 

- yr-  logf 1  -  F(t)l      when a density exists.     For this  reason,   v e say 

that     F      is      IFR (DFR)     for increasing (dec reasin;;) failure rate if 

logf 1 - F(t)l      is concave where finite     (convex on f 0, or) ).     Note 

that any     IFR (DFR)     distribution with specified mean can be ex- 

pressed as the limit of continuous     IFR (DFR)     distributions " ith 

the same mean.     Hence for many of our results it is  sufficient to con- 

fine attention to continuous      IFR (DFR)     distribution''. 

We often use the well known fact that if     F     is continuous, 

then     Y  = - 0 logT (X)     is exponentially distributed with mean     (I 

where     F^x)  -- 1 -  F(x)   ,     Repeatedly we use the fact that if     F     is 

IFR     with mean      ß     then there exists      x-   > 0     such that 

r < x     for x < xn 

y = -6IogFr(xj-< 
(   > x     for x > xn 

This is evident from log concavity and the bounds on     IFR      distri- 

butions given in Barlow and Marshall (1964).     The inequalities arc 

reversed when     F     is     DFR. 

Unless otherwise indicated we denote ordered observations 

from a random sample of size     n     based on a random variable     X 



by      X.   •'...<   X      .We define      XA   ^   0    . 
1   — —      n 0 

I.     Estimates based on censored samples.     Assume      n      items nrc 

put on  life test and let     X,  <   X ,   <        <   X        denote the ord'-red 
I ~      L  — —      n 

observations.    If     F     has density     f     such that 
x 

*    e x>0 

-A* f(x; 6) 
0 x < 0 

then 
r                                                r 

y X.    f   (n -  r)Xr           y (n-i f 1)(X. -X.^,) 

(2.1) f7 :   _V     =    J_ ^__ 
r, n r r 

(I  <  r   <   n)     is the maximum likelihood and minimum variance un- 

biased estimate for      B    based on the first     r     order  statistics 

(Epstein and Sobel,   1953). 

The normalized spacings      Ö.   = (n - i + 1)(X. - X.   .)     which enter 

into the computation of     fi have a natural intuitive appeal.     Thev 
r. n r 

have also been used as the basif for a statistic to test for     IFR 

(Proschan and Pyke,   in preparation).     We shall derive and use  sev 

eral properties of these spacings when     F     is     IFR  (DER)   .    Since 

the normalized spacings are independent and identically distributed 

in the exponential case (Epstein and Sobel,   19S3),   Theorem I. 1   belo\» 

is quite intuitive. 

A random variable     X     is  said to be stochastically smaller 

than a random variable     Y     if and only if     Pf X > x]   <   Pf Y > xl   for 

all x. 



Theorem 2.1.    If     F     is     IFR (DFR)     the normalized  spacings 

(n - i +1)(X. -  X.   .)     are stochastically decreasing (increasing) in    i 

Proof.   Assume     F     is     IFR     and let     F(x) = 1 - F(x).     Note that 

PfnX^  xl   =  [r(-^)In   >   fFf-^-)]""1 

since     f F(t)] is decreasing in     t Let 

F(u + x)  -  F(u) F  (x) = 
u 

F(u) 

and note     F   (x)  >   F(x)    .    Given that     Xi    =   u     is observed,    X, - X, 

is distributed as the first order statistic from a sample of size 

n - 1     each with distribution     F   (x)    .     Hence 

Pf   (n - 1)(X2 -  Xj)   > 

Conditioning on     X.     we have 

Xl=Ul='Fu<^" 
n-1 

x» i n PfnX^x]   =fr(i)]">fF  (^))n-1 

= Pf (n  -  1){XZ  -  Xj)  >   x |   Xj   = ul 

for all     u > 0.    Unconditioning 

PfnX^xl    >     ^     fFu(1^r)ln-1dG(u) 
^ 0 

=    Pf(n-l){X2-X1) > x] 

where     G(u)  = 1 - fF(u)]        is the distribution of     X, Kence we 

have shown that     nX.     is stochastically larger than     (n - IHX, - X.) 

In a similar manner we can show that     (n - i + 1)(X.  - X.   .) is 

stochastically larger than     (n -  i)(X.   .  -  X.)     for     i = 2, 3 n 

All inequalities are reversed for     DFR     distributions. 

As an immediate consequence of Theorem 2.1 we have that 



E(f(n - i + 1)(X; - X.   .)]»] 

is decreasing (increasing) in     i     for    o >  0     when     F     is     IFR 

(DFR) Using this fact we can show that      6 is positively 

biased when     F     is     IFR. 

Corollary Z. 2.    If    F     is     IFR     with mean     9   ,   then 

0 < Ef 0       ] <   n-- lor     r = 1, 2 n. - r, n '  —     r 

All inequalities are sharp. 

Proof.    From Barlow and Proschan (1964a, p.33) we know that 

E[e,   ] > e . Also 1, n   — r 

h(r) =J|Ef(n - i + 1)(X. - X,   j)]   -  e] 
:=1 

exhibits at most one sign ch\nge as a function of     r     since 

Ef(n - i + 1)(X. - X.j)] 

is decreasing in     i    by Theorem 2.1.    But    h(l) > 0     and     h(n) = 0 , 

which implies    h(r) > 0    for     r = 1, 2, . . . , n  .    Hence 

Ef©       ) >  0  . 
r, nJ — 

Clearly the bound is attained by the exponential distribution so that 

it is sharp. 

To show the upper bound we note 

r n 
N   X. + (n - r) X    <  )    X. 

r —  /,      i 
i=l i=l 

for every sample realization.     Hence 

Ef r?      ] < n Ö r. n' - 

or Efe        ]   < n-    . 1    r, n'   —     r 



Since equality is attained with distributions degenerate at      0    (uhich 

is the limit of     IFR     distributions) the bound is  sharp.11 

Corollary Z. 3.    If     F   is     DFR     with mean     0   ,   then 

0 < El 0        ] < P for      1 ^ r <- n    . — r, n   — — 

All inequalities are sharp. 

Proof.    The upper bound follows from Theorem 2. 1 and the method 

of proof in Corollary 2. 2.    To show that the lower bound is sharp, let 

F(x) = -I 
f e 

ex 
T 

x < 0 

x > 0 

where    e   > 0     is arbitrary.     Then     F     is     DFR     with mean   B    and 
i-1 

P[X.>xl =^j
n^[F(x)iJfr(x)in--j 

i-1 K <x/n-j) 

J=0 

Hence 

E[X.] 
or 

i-1 
n-)-l 

Pf  X.    >   X]    dx   .    Y    ^^^ 1 
J=0 

i    <   2%e 

when     0 <   e< 1 Since    e      is arbitrary we see that 

Ef X.] > 0 (1 < i < n) 

is sharp. I 

For convenience we now denote the i      order statistic  from 

a sample of size     n     by     X 
i, n 

Theorem 2.4.    If    F     is     IFR (DFR)     (n - i + 1)(X.       - X.    ,     ) is   i, n i -1, n 

stochastically increasing (decreasing) in     n     for fixed     i.     Hence 

Efe    ] < Efe       .] 
r,n— r.n + l 

(>) 

(1 < r < n) 



Proof.     Assume     F      is      IFR    .     Let       G.      (x)   =  PfX.       < x]       and 
  i, n l     i, n -     ' 

note that     G.     (x) < G.        .(x)     for  samples from any distribution, 
i, n       -     i, nf 1 K 7 

Now 

<  ,rffA-^r)lnt'-'^.nt,'"' 0 

=     Pf(n + l-i)(X. + 1   n + 1-X.   n + 1)>x]; 

1 

the first inequality holds since     f ^(t)! is decreasing in    t    when 

F     is     IFR    . 

All inequalities are reversed when     F     is     DFR. || 

A 

Thus when     F     is     IFR    ,   the estimate,    ^ ,   of mean life 
r, n 

based on a sample censored on the right becomes worse with in- 

creasing   n   when   r      (1 < r < n)     remains fixed. 

Acceptance Sampling.    Statistical methods for testing hypotheses 

about the mean of an exponential distribution depend on fhe statistic, 

6 ,   in the case of censored samples (Epstein,   1960a).     For test- r. n r r 

ing the hypothesis      Hn:  0 = 6^     against the alternative     H • 

6 = 6. < 6-      subject to     Pf reject  9 - 6Q\   fiQ true]   =   n .   the rejec- 

tion region is of the form 

e      < 
r, n — 

2r 

If       Xi     (^r) < Zr   ,   then we shall prove,   using Lemma Z. ^,  that 
i - cr 



(2.2) P   I     fl < \   Q  F    IFR;    n   ::    f» 
r, n   — 2 r u 

<    P'   P <     OM-o1      ' 
— r, n   — 

2 
F(x)   r l-e     e0 r> 

so that the exponential test provides a size     o     test whrn the failure 

distrihution  is      IFR To  see (J . 2)  we  need  the  folio" ing  easily 

verifiet'   result ^'hirh v e  present  without proof 

Lemma  2.S.      If     $     is concave        <M0)  r 0    ,   and     a    > 1, 

x.    > 0 (i  = 1, 2 n)     .      then 

<t> ax.     <     )a.(t)(x.) 
i   i    — i i 

ui J      ,--1 

Let        4)    (y) =-^log F(y)     so that     X.   = cj)(Y.) 

where Y.      is the    i        order  statistic of 3n exponentially distrihu 
i 

ted random variable with mean      0    .     Then 

r 

rfl =     >   *(¥.)   +   (n -   r) * (Y   ) 
r, n i r 

Ul 

r        ;    Y.    +   (n -  r)Yr 

i=l 

by Lemma 2.S.     Using the bounds  on    IFR     distributions (Barlov 

and Marsnall,   1964) and letting      7. =    F   Y.   v (n -  r)Y 
r       ,=1     l 

we have 

pf> ^(7r) £ c"l f pr)^z   £ cl 

when     c   <   fi    .     We obtain    (2.2)    by letting      ^ ' ^Q     and 



vi-^"-1 

Samplir.^  with Replacement.     Suppose nou1 that  failed il'-ms are  re- 

placed at   failure.     In this  case  the bias  of the  usual  estimate  for      f' 

is even greater than  in the nnn-replacement case. 

* t h 
Let      X.     denote the  time  of the    i failure  when  failed  items 

i 

are   replaced.     The  maximum  likelihood estimate  for      fl     based on 

the  exponential assumption is,    in this case 

nrn.   -   lnX]    *   n(X2   -X,)   ....    . nfX^X^,)] 

nX 

(Fpstein.   1960b), 

Theorem I. ^.     If     F      is      IFR      with mean      ^    ,   then 

f  '   K\n 1   ^   Effl        ]   < ~  K\ X   ]      I   <r   r   <  n 
- r,n— r,n—   r r -       — 

Proof.    Clearly     X      ^   X for any distribution      F      so that the 
                                r   —      r ' 

upper bound is obvious.     To sho"   the remaining  inequality we intro- 

duce the  following  fictitious  replacement policy: 

Policy A:    Replace a failed item with a good item of the same "age" 

** th 
Let      X.        denote the time  of the    i        failure under  this policy and 

i*« 

r. n 
(n  -  i  »   1)(X.      -  X.j)    . 

i=l 

It is clear that     F ffl ]   -r   F ^ 
r. n     — r, n 

since  under  the  IFR  assumption  the conditional  mean  life  of an aged 

item  is  less  than the  mean  life  of a new item. 
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A   «* 

We need only  shcnv      F. \0        1   <   Ef^ 1 Let 
r, n    - r. n 

F   (x) 
u 

F(x  f LQ -  F(u) 

F(u) 
and G(u)    =   Pf X.   <   ul     .     Then 

1  - TTTI    M 
P^. - ^i > Ah<, = ui = [F..( A)i x   .in- 1 

u     n 
and 

Ef (n -   1)(X,  - X.) 
c. 1 

r    -i  rr 

^0    -0 
\       fr   (JL)]""1   dx   dG(u)   .     Similarh 
i,-, u    n - 1 

under  Polic y    . 

and 

Pf X.    - X.     >   _     x, = 
£ 1      —    n 

, =ui = fr (ü) 
1 ii    n 

x , 1 n 

Efn(X** -   X**)l    «   (      (        f r( -IT dx   dG(u) Z 1 J0 J0 u   n 

Since 

have 

To sh o 

x» i n .,     f Ä  ,    x    , i n - 1 
u' n-1 fru^)lnl ^.(^T)1 hen      F      is     IFR 

** «« 

we 

Ef (n -  1)(X2   -  X^l   <   Ef nfX^     -  Xj    )| 

Ef(n - i +  1)(X.   -  X^j)!   <   Ef(n - i + 1)(X** - X*_*H 

for      2 <   i < n     we proceed as above except that the definition of     G 

is different for the tvo policies.     For example,   for      i   -  3     let 

G(u, I   u.)   =   Pf X, < u, I  X,  = u,1 
2 I   "1 " "1 

and 

^l-fF^-u,)! n-1 

G'(U2|   U,)   =   P[X** < u^ i  X,"* =   u,! 

= '-(^2-",""   • 

Since G(u, I  u.)  <   G   (u-, |   u.)     we have 



Ff (n  -   J)(X:   -   X,) 

1! 

■ or    , . or 

\        [        f F     (JL^)]n"idx dG(u J   u,) dG(u,) 
• 0    ■ 0 

.or     .or 

1    \    [ r  (-^)in"'dx dG*(u J u.) dcfuj 
O    • 0 

or      . or 

u ,   n -.. 

'   \        \        ff     (-)1ndx dG   (u, |   u.) dGfu.) 
-   . 0     . 0 u^,   n .1 1 

=   F| n( X .   -   X ,) I   .    A similar condition ng argument 

wnr k s  for       3   ''   i   ^   n    .   j | 

Bounds on estimates for the  reliability function.     The minimum 

variance unbiased estimate fo       R(t)   =  FfO      (t is fixed)     under the 

exponential assumption is 

Rjft)   = maxf 0,(1 - ^ ) L )r-1. 
r 

where      7     =   5"    X.   +  (n-r)X For a discussion  of such minimum 
r      M     ' 

variance unbiased estimates  see Täte (19S9).     For convenience, 

assume that       0 = 1 Then,   under the exponential assumption.       7 

has density 
r-1   -v 

ßr(y)   ^ y (r-^)!      • 

Theorem 2.6.    If     F      is      IFR     with mean      B  = 1     and     t < 0 = \. 

then 

F fR^Dl   >    \    fi 
. 1 

t 
^1r"lKr(y)dy ^ (    (i-t;r-lRr(y)dy 

Proof.    W thout loss of generality we may assume      F     continuous 

-1 
(see preliminaries).     Let      <t>    (y) = -log Tfy) Then     0     is c on • 

th 
cave,   increasing and     <t>(0)  = 0    .    If     Y.      is the    i        urder statistic 



1.' 

Irom an exponentially distributed random variable with       0 = 1 

then      X.   =  (MY.)     is the    i        order  statistic  from an     1FR      random 
i i 

variable with distribution      F     and mean      0  -  \.     Furthermore 

r 

7      = <MY.)  Mn -   r) (HY   ) 
r i r 

i   1 
r 

^   *'   V    Y.    f (n   -   r)Y     I   =    v [ Z* 

by the previous  lemma.     Therefore 

Rjlt)   -   max[ 0.(1 - ^ 
r 

Since 

2  max[ 0.(1 Lj- )r"1   ] 
^(zr) 

v y   <  1 
<t> (y) 2   : 

1 y  ^  1 

t ! r-1       ,   v   , ,,      .vr-1 

ve  have 

F[R.(t)l    -     \    '{\  ~   -V'1 gjy) dy   f    \       (1 - t)1"-1 g   (y) dy    . 
i       -   . t Y r , l «■ 

The maximum likelihood estimate for      R(t)   under the exponen 

tiaI assuinption is t 

* r  n 
Rz(t)   =   e     r'n 

where     B was defined in   (2.1)  .     Pußh (1^3) has shov n that 
r, n 

A 

under the exponentia. assumption     RJt)      is negatively biased uhen 

tne true reliability      R(t) >   -    -    .   368  .       Assuming     F     is     IFR 

we can obtain a lower bound on     E[R,(t)| 

Theorem Z.7.     If     F      is     IFR     with mean      B '\ .   then 



M 

.       tr fr 

EfR   (t)l   >    \       J7® gjy) dy   f   e^   f "ß   (v) d' 
• 0 ' •  1      ■' 

The proof parallels that of Theorem Z. 6. 

Estimates and confidence hounds on p« rcentiles.     If      F      is      1FR 

with mean       0     and    p        perc entile F,       ,   then 
P 

f .log(l  -  p}]('    <    f      '_    LMiJ - P)1   fi     . 

(See Barlow and Marshall (1964) ).     Hence by Theorem I. 1 

V..0 L±i§ü  -  EU     ;    >   ^ for      •    --  1,^ n 
r.n p I    -      P 

wh,le E.' ^      f.iogd - p)i   ] < ; 
n, n ^ r   ' —      P 

and one might be tempted to use these estimites to bracket      ^ 

Intuitively,   wc want a confidence interval to ha'e  small expect- 

ed width when  it covers the true percentile.     The usual distribution- 

free confidence intervals based on order  statistics have smaller 

conditional expected width under the      IFR (DFR)     assumption than 

under the exponential assumption,   given that the interval contains 

the true percentile.     To see this let      Y   -   - ——. " M   -—,-        and note r -log(l - p) 

that      Y      is  exponentially distributed  with  p       percentile      ^ when 

F     is continuous.     Suppose that      X.   <"   C      <   X Then clearly 
i   -     p  -      1 

Y    - Y. 
■^J- TT     >   1,       which implies 

J      '  i 

FfX. - X. I  X.   < C     <   X 1  <   Ff Y    - Y. | Y.   <  ?     <   Y.l    . 



M 

3. Estimates bp.sed on trunrated samples. If n items are placed 

on life test and if sampling is terminated at time T , the associa- 

ted sample is called a truncated sample. Let X. < X, < . . 

denote an ordered sample from a distribution     F      and let 

<   X 
—       n 

V(T) 

r 
\ 

1=1 

X.   f   (n  -  r)T 

where     r      is a   random variable and denotes the number of    X's  less 

than     T     .     Then      V(T)     is the total  life observed up t'> time      T 

This statistic  occurs,   for example,   in sequential life tests  for the 

exponential case (Epstein and Sobel,   19^).     It is not surprising that 

this statistic also has greater expected value under the      IFR      as- 

sumption. 

For    convenience,   let      G(x)   =  1  -   e 

x 

7 

Theorem 3.1.      If      E      is     IER (DER)      with mean     0    ,   then 

E FfV(T)l   >  EG [V(T)1 

Proof.    Assume      E    IER     and let      X,   <   X,   <....<   X        denote an 
  1   —      Z   — -      n 

ordered sample from     E Without loss of generality we may as- 

sume      E      continuous.     Let     y  =  -f^log   E(x) We  knov   there exists 

xf>   ft     such that      x   > - ft log F/x)   for      x   <   x.     and    x < -6 log r(x) 

for     x   >   x-      (Barlow and Marshall,   1964). 

Let     Y.    =  -ftlogHX.) If     T   ^   xn    ,   then 
i 0 i —      0 

r 
V 
/       1 

i=l 

X.  + (n -   r)T   >  )  Y.   Mn -  r) T   > ^   Y.   f  (n -  s) 1 
— /      i — /       i 

i=l i=l 

where     r (s)     denotes the number of    X's (Y's)     less than T 



r 

Hence for      T   <   x,. 

FFf V(T)1   >   EGf V(T)1    . 

Let 
Y. if     Y.   •'   T 

Y.   --^ 
T nlhe r •■ i se 

For      T >  x„    , 
r s 
X    X.   Mn  -  r)T   -   x   Y.   -   (n -   8)T 

i i 

i=l i=l 

r r 

=     )    X. +    n -  r T   -     '   Y.   -   (n -  r)T 

i=l i=l 

n 

>   )  (X.  - Y.)   f ^    (X.   -  Y.) 

i=l 1=7+1 

since      X.   <   Y.      for     i   >   r   .     Hence 
i  —      i 

n n 

E_f V(T)1    -   E„f V(T)1   >  E|   /  X.   I -   E1 ^ Y.  ■   =0 
r U — i i 

LiVl iV] 
for      T   >   x»    . 

A  similar argument holds for the     DFR     case., 

Consider the estimate 
r 
1     X.   +   (n -  r)T 
i=l       l 

  u      r    ■>   0 

^(T)  =   V(T) 
r 

nT if     r   =   0 

When     F     is the exponential distribution,       ^(T)     is the  maxmum 

likelihood estimate of     ^    .     In this case 

Ef^(T)l    =   9  -   cov(r^(T) \     >    9 
i- exp{- -Q) 
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SI ince     r     and      f'(T)     are negatively correlated (Bartholome-v, 

1957).    In the      IFR     case,   this  statistic  exhibits even greaier bias 
x 

for     T      0    .    As before let     G(x)   = 1 -  e" "f   . 

Theorem  3. Z.     If      F     is      IFR       ^ith mean     0    ,   but nni degenerate 

then 

EFf 0(T)  | r   >   1]   >   EclO{T)  | r   >   1] for     T ' P   . 

Proof.    Assume      F     is continuous and let     Y.   = -fine FfX.) as 
  i i 

before and let 

We can write 

a.    = 
r1 if     X.   <  T 

i   — 

0 otherwise 

b.    = 
f1 

J 
if     Y    < T 

i — 

i 
0 
n 

other\»ise  . 

0{T) 

T 
- 

- a   (T  - X.) 
i                • 

if 

n 

^    a     >   1 
n 

1^ 
i   — 

iTi 

1 = 1 

Assume     T <   $    •       As in the previous proof     X. < T     implies 

Y. < T     and hence     a   < b.    .     If     a.   = 1 ,   then     b.   = 1     and 
i i —    i i i 

T - X. < T - Y.    .     Hence if     T    a.   >   1, 
i = l 

i  — 

n 

)    I  T - a.(T -  X.) I ^     T - b.(l i<T - V 
>    i=l 

n 
V 

i=i 

a. 

and EF[P(T) r > II   >   EG[0{T) 

n 

^, 
i=l 

> 1] for      T <   P 
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Inverse Binomial Sampling. 

Nadler (I960) has considered the following type of sampling. 

An item having life distribution   F   with mean    f)   is put on test until 

it fails or time    t    has elapsed; at this time the item is replaced by a 

fresh item.    This is repeated sequentially until    r   actual failures 

are observed.     The number    N    .   of items that have to be tested until 

the    r   actual failures are obtained is a random variable.    Nadler 

x 

(i960) showed that when     F(x)   =   1 - e ,   an unbiased estimate of 

6     is 

fl  (t)   = -  -    X   Y.   f (N-r)t 

i-1 
r- r        ^      i 

w here the     Y,, . . . , Y       are the    r   life lengths not exceeding   t    . 

We  show next that when    F    is    IFR (DFR)    with mean 6   ,   then 

A 
6  (t)    is biased high (low). 

Theorem 3. 3.    If   F   is   IFR (DFR)  vnth THJAD    d   ..then   E0 (0 >(<K' . 

Proof.      Let   F   be    IFR    .     Let    Z.    denote test time elapsed between 
  i 

the    i - 1       failure time and the   i       failure time,     i = ,1, <!,..,, r, 

where the     0       failure time is defined to be     0    .    Then 

r 
A i  V Mt) = - ; z.  . r r   ^     i 

i--l 

Next consider an alternate testing procedure differing in that 

replacement occurs only upon failure.    Let     7.'.   = test time elapsed 

f etween the   i - 1       failure and the   i       failure under the alternate 

testing procedure.    Now since   F    is   IFR    ,   Z.    is  stochastically 

career than   Z.    .    It follows that 



EGr(t) 

r 
1     \ 1   \ 
r    / i   -   r i 

i-l i=l 

The inequality is  reversed when      F     is      DFR 

Sampling with replacement.    In this case 

If 

6{T)   -- ^1 nT 
n 

\ 

Ul 

NjIT) 

.th u'here     N.(T)     denotes the number of replacements in the    i        item 
n 

position and     r  -    T    N.(T)     denotes the total number of replace- 
i=l     l 

me nts in      [O. T]    .      Of course     E      (     is unbounded 

N.(T) 
i = l 

T However,   ve know that     E[N.(T)]   < -i-      for all     T  >  0     (Barb-. 
A 

and Proschan.   1964b).     Hence this again indicates that    f> (T)     will 

tend to be larger in the IFR case than in the  exponential case. 

4.     Bounds on time to     r       failure.      Under the exponential ass 'mp- 

tion,   the distribution of the statistic      6 depends only on     r     and 
r, n 

not on     n    .     The choice of     n     in this case is usually determined 

by the ratio 

E(X        ) 
 LLIL_ 

E(Xr,r' 

which is an indirect measure of the expected saving in time due to 

putting more than     r     items on test but terminating at the    r 

failure (Epstein,   1960a).    We always have 

^r.n'     <   1   . 



1' 

Since the bound is dttained by the degenerate distribution ( ■ hu h is 

the limit of      IFR      distributions),   this is not a useful measurf   if 

wc assume only     IFR    .     Ho- ever,   ■■ c can obtain non-trivial bounds 

on      K(X        )    . 
r, n 

Assume      F      Is     IFR,     with mean    1,     and continuous.     Wi- 

th 
may \'rite     Y.    -   -IcgF'fX.)     -vhere       Y.     is the    i        order statist K 

- \ 
in a  sample of     n      from distribution     G(x)    -  1  -  e       ,   and is a enn- 

t h 
vex function of     X.,    'here     X.      is the    i        order  statistic  in a 

i i 

sample of     n     from     F    .     By Jensen's inequality 

E(Y.)   >   -logF [■E(X.)1, 

so that 

n E(x.)i 2 ^■F'(Yi) • 

If     b(x)      is a sharp upper bound on      P(x)    ,   then     b     is decreasing 

to     0     and 

b[ E(X,)1   >   e'E(Yi)    . 

Hence choosing      x-      such that 

b(x0)   .e-^l    . 

uhere of course 
i 

F(Y.) = >  1—^ . 

we have j -1 

E(X.) <  x0 . 

Using tabled upper bounds on     r      given one or tv> o moments of     F 

(Barlow and Marshall,   1963)   we can obtain upper bounds on     E(X.) 
i 

When     F      is      DFP      we can,   in a similar manner,   obtain lover 

bounds on     E(X.)     using lower bounds on     F 



If 'v e   specify  the  first  moment  of      F    ,   explicit  upper bounds 

can be given on     F(X )       'hen      F    is      IFR    ,   as  sho" n in 

T heorem 4. 1.     If     X,   <r   X,    '' '   X        arc  order  statistic s from 
n 

an     IFR      random variable vith m«',in     0     and     Y.   •'   Y 

are ^he order  statistics from     G(x)        1  - e    "   ,   then 

(a)    T-FfYj)   <   FfXj)   ■_    f 

Y 

(b) 
f1 F(Y  , 

F(X.) r  -■ ~ ^TTTJ 

0   <   F(X   ) <   eE(Y   ) 
n   — n 

I <- i ^ n 

(a)    and    (c)    are  sharp and    (b)    is non-trivial though not  sharp. 

Proof,     (a)    and    (c)    ire  sho" n in  Barlo"   and Proschan (19Ma), 

Chapter I.     Hence ■■e need only oro/e    (b)   and   ve may assume     0  - 

First let us verify that    (b)    is  non-trivial.     Note that by    (a) , 

EX      .   <   FX      <   FY     ,   so that      FY        is a trivial upper bound for 
n-l— n— n n 

FX     ,    .     Therefoie,   a non-trivial upper bound for      FX      .      must be 
n-l r n-l 

FY 
n-l 

less than     FY   ;    i.e.,   we must  sho'v that ~™, 
n , - L Y 

■    <   FY 
1  .   e-

r'Tn-i n 

But for      z   >    0    , 

1 1 
- +     + 
n      n-l 

1  -  e 
—   ^   z    f  1    ;    thus  letting        z   -   FY 
-z ^ n-l 

e c one lüde 

FY 

1   -  e 

n-l 1 1 
n n-l f  4-   +   1   =   EY 

c n 

To shejv.'    (b)    use the bound 

r(x) - b(x) 
X   ^     (" 

e \ >   f 
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. x 
where w de pend s on X a nd sat1sfies e- w u du = (' . 

(Barl ow a nd Ma r !" ha ll, 1964) . 11 

Sharp b oufl'i s w ill b e de r i ved i n a futur publ ica ti on . H owever 

thes e ar e n o t as conve n i n t as t he bounds o f Theor e m 4.1. 

Bounds o n expec t ed v lue s of o r d e r s t a tistics ca n a l so be 

th 
g iv en in terms of the p pe r c n t ile. 

Theorem 4 . 2 . Let xl .s. x l .s. . .. .s. xn 
th 

denote th e o rder statis-

tics from F , IFR with p pt: r cent i le .; p Then 

( 4 . 1) r p .' 1 1 ) E ( X .) < m a x r. t + 
J - p ' -1 og q n . . . ( n - j + l) ' 

ann 

( 4. 2 ) 

j-1 

E ( X .) > \ (~ \, r,; p 
J - L l Jo 

i =O 

X 1? q X log q 

,1- e P }(e tp )
n-i 

w he re q = 1 - p . All inequa ities are sharp. 

Proof. To show (4 .1), let 

r 1 
= l x-.; 

q exp[ ( ri> logq) 
p 

0 < X < ~ 

X > ~ 

Not e that Cl\(A) = 1 and G~( .; p) = 1- p = q Since log r-(x) 

is concave, there exists at least one value of ~ > 0 such that 

Y . 
J 

is the /h 

Thus E(X .) < sup E(Y .) where 
J - J 

o < 6 < E 
- - p 

order stati s ic from G
6 

. N ~w 

' -1 

E(Y} = A + f " 2: ( ~)P.,Ix))i[~A(x))n-idx 
:6 . 0 1= 

dx 

r(n+l) sl ~-1 n-j 
r(j)r(n + 1 - j) G (x) (1-t) dt Gx 

6 

= ~ + i ao 
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To find the maximizing     A   ,   consider 

r(n  f  i? . 
(jr(n  M - j)    J ^E(Y

J
) - 1    rmn 

. i 

GA(A) 
tJ-^l-t)"^ dt 

Hn f 1) 
Hj^n  f 1  -1) [GfxJl-'-^Clx)!"- 

A 

x - C x - ^ 

*qexp[-p—TT 
logq] loKq -^T- 

dx 

Since     GA(A) = 0    ,   - (?     - A) 
'-A 

reduces to 

njinnVi1'j)   rtGA""iJ'''ca"'>in'J^'-M.-;p)^.F(Yi)-<| 

where     cA     is the density of     GA    . &A 7 A 

Hence 
^     - A 

(?     - A)   '     E(Y.)   =   A--E    (if    f    1 T)  - $ x^p rjA j' logq      vn n  - j  M p 

=   -(^      -  A)( 1   f    T-i-   (i   • 
D loß q     n ^)   1 n-j ^ 

For     j      such that     1 f -,    { — +  ....  f  .—r- )     <   0,   we have 
log q     v n n - j f 1 

JL  E(Y )   <   0 .    For    j    such that     1  ^ ,—?— (i   f . . . .   f —^-r )   >   0 

d A     %   j    - , lf)g q    n n - j + 1      - 

we have     -r—rE(Y )   >   0    .     Thus     E(Y )      is maximized in the first 
dA    v   j'  - v    j 

case at     A  =   0     and at     A =   €        in the  second case.      When     A  =   0, 
P 

^n 1 1 
F.(Y )   =  -T-E    (if f  i^-T- )    .     When     A   =   ?    , E(Y )  = ?    . 

J - logq    xn n - j f 1 P J P 

r   e 
X logfp for     0   <   x   <   ^ 

To show (4.Z).     Let C(x)   =  1 p 

0 for     ^      <   x   ^   x   . 
P - 
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th 
Then     C(x)   <   Ffx)     for all      x   >   0     and     G     has    p       percentile 

^       .     Thus     E(Y )   <   F(X  )     where      Y       is the    j        order statistic 
P J    - J J 

from     G..    But 

E,Y
J
) =  ] \    / n 

0 
[Gfx)]1 [Cl.)]"'1 dx 

i=0 

Using the above definition of     G   ,   we obtain (4.Z). 

5.     Further results on order  statistics and spacings.    In this section 

we pi rsent some results of theoretical interest concerning order 

statistics and their spacings from     PF>     and     IFR (DFR)     distri- 

butions.    Many of the results hold without the restriction     F(0~)   =   0 . 

First we present some total positivity properties of the order 

statistics.    A function     K(x, y)     of two real variables is said to be 

totally positive of order      r (TP   )     if for all     1   <   m   <   r; 

x,   <   x ,<....   <    x and     y,   <  y ,<....<   y we have the 
1 —      Z — --m ' i -   ' I  - —   7m 

determinant inequalities 

K(x., y.) ,   > 0   . 
i.J=l   - 

The following lemma is of use later on,   as well as of interest in its 

own right. 

Lemma 5.1.    Let     F     be a distribution having density     f     with 

f(x)      not necessarily     0     for      x   ^   0    .     Let     f.(x)     be the density 

of the    i       order statistic  in a sample of size     n    .    Then     f.(x)     is 

TP in     i, x     where     i   =   I, Z , n     and      - oo   <   x  <   oo . 
o 

Proof. 

.i-l. (5.1) f.(x)   =  (.^^.j,    F1*1^""1^)   f(x) 



^(xp1"1 
Since       -   —— is      TP in      i      and      x    ,   when       i  -  1, Z n 

HXP 
11 

and      - oo     ^   x   <    ac       ,   the conclusion follows. I i 

We may obtain a  similar result concerning the right hand tail 

of the distribution of an order statistic. 

Lemma S.Z.     Let      F     be c ny distribution with     F(x)     not neces- 

sarily     0     for      x   ^   0    ,       F.     the corresponding distribution of the 

i        order  statistic.     Then     F (x)     is      TP in     i, x    ,    where 

i   =   1,1, n     and      - J-  ^   x  <   cr   . 

Proof. . 
                                          i-l 

(5.2) F(x)   =    Y   ^   FJ(x) Fn'J(x) 

j=0 

f F(x) V 
Now     J —■— >       is     TP       in     x, j    .    Therefore 

F(x) 
00 

p ,   . V^n N _n.   .  ^F(x) ^ . 
F.{x)   =      .      j   j (XM"       H(i - 1 - j)     is also 

r(x) 

TP     in   i and x , where     H(k)   =   1     for     k   >   0    ,      0     otherwise. I 
or " — 

In Barlow,   Marshall,   Proschan (1963),   it is shown that the 

order statistics from an     IFR   distribution themselves have an     IFR 

distribution.    The next lemma shows a  similar preservation of the 

PF,     property. 

Lemma 5.3.     Suppose the underlying density     f     is     PF,    ,   with 

f(x)     not necessarily     3     for     x   <   0    .    Then the density     f.      of the 

i        order statistic is also     PF       for fixed     i   =   I, I, n 
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Proof. It is easy to verify that when f is PF 
2 

, so is F and 

~. Thus log f, log F, and log~ are concave. It follows from 

(5.1) that log f . is concave , or equivalently, 
1 

fi is PF 2 for 

fixed i = 1. 2, .. .. .• n • II 
Next we obt ., some comparisons between the o rder statistics 

of an IFR (DFR) distribution and the corresponding order statis-

tics of an exponential distribution. 

Theorem 5. 4. Let x1 2_ x2 2_ •••• 2_ Xn , n > 2 , be order sta-

tistic£> from F , an IFR (DFR) distribution with mean 6 , but 

t 
-11 f 1 - e • Let y 1 2 y 2 < < Y be order statistics from 

t 
-11, 

G(t) = 1 - e 

n 

Then 

(a) EX . - EY . has at most one change of sign as j goes 
J J 

fr o m 1 to n • Moreover if one change of sign does occur, then 

EX . - EY . goes from positive (negative) to negative (positive) values. 
J J 

(b) If 6 = 6', then one change of si.gn does occur. 

Proof. 

(a) Assume F is a continuous IFR distribution with 

mean 6 and G is exponential with mean 6 ' • We have seen in 

Section 1 that if Y has distribution G , then 
y 

X = <1>(1?) has dis-

tribution F , where <l>- 1(x) = -log~ (x) a convex increasing 

function which is 0 fo r x = 0 . 

Thus 
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where     g,      is the density of the    i      order  statistic from the ex- 

ponential distrihution     G    .     By  Lemma  5.1,      g.(y)     is      TV        in     i 

and   v .   Also   C(-v,)  -   y     changes  sign at most once,   and if once, 

from positive to negative values.     Py the variation diminishing 

property of totally positive functions (Karlin,   1964,   p. H),     F.X    -   KY 

also changes  sign at most once ,   and from positive to negative values, 

if at all. 
n n 

(b)    If    fi  -  0'.   then     1  EX.   = fl =  fl' r   T. F.Y.   .     Hence    KX.   -   KY 
.,i ■    i       ' l ' i=l i=l 

must change  sign at least once or be identically     0     fo. 

i  = 1, 2, . . . . , n    .     Now since     F ^- G    ,     F      cannot agree with     G 

on an interval.     Hence  by Corollary 4. 10,   Chapter i. of Barlow and 

Proschan (1964),       EX,   > EY, and     EX    <  EY      .    Thus    EX   - EY 
11 n n '.i 

is not identically      0     for     i  =1,1, n.     Hence     EX.   -   FY. 

chai.ges sign exactly once. 

If     F     is      IFR      but not continuous,   we may obtain the  same 

result h)  using continuous     IFR     approximations. 

Finally,   a  similar argument holds if     F     is     DER.  |; 

Actually,   under the same hypothesis we may prove a   stronger 

version of (a) in which      EX.  -  EY.      is  replaced by      EX.   -    EY.     , 
i i r i i 

a > 0    .    Jf instead of assuming     E'X   =  EY      in (b),   we assume 

EX     = EY     ,   then we may show that  one change of sign of    EX.   -   EY 

does occur.    We omit tne details. 

We may obtain further consequences of Theorem S.4 usin^; the 

notion of major izat ion.    A vector     a = (a., a, a)     major i? es 

a vector     b   =   (b,,b    b   )     (written     a   >  b)   if 
— L     c n —        — 
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a. > a    >  . . . .   > a   ,   b   > b    > . . . .   > b   ,      1   a    >     ^    b., 
I —    I — —     n       l —    Z — —    n       ..i-.i 

i   1 i=l 
n n 

k   =   I, I, n-1,      and      Z   a.   =   2.   b      .    See Hardy,    Littlewood, 
.   .     i      .    .     i 
i=l i=I 

Folya (19^),   Chapter II. 

Theorem S,5.     Let      X,   ^   . . . . <   X        be order  statistics from      F    , 
—— —— 1 — —      n 

an     IFR (DFR)      distribution with mean    0     ,   Y,   <....<   Y        be 

t 

order statistics from     G(t)   -   I - e     .    Then     (EY   , EY EY.) 
n n -1 i 

^"f-X^EX^, EX,)   . 

Proof.    Let     E     be     IFR    .    From Theorem 5.4 we know 

EY     .   , -  EX .     has one chance of sign,   from plus to minus as 
n-i + I n-iM e s r 

n n 
i  goes from    1   to   n   .    We also know     T.   EY    .   , = nö =   Z  EX     .   ,• 0 .   ,        n-ul .        n-i-t-1 

1=1 i=l 

J J 
Thus    Z   EY , >   Z   EX .,  J  = 1,2, n   .    Finally,   EY 

,        n-if 1 - .   ,        n-i + 1    ■>        '    ' 7' n-i + 1 
i=l i=l 

and     EX     .   ,     are decreasing in     i    .     Thus the conclusion follows. 
n-i+1 & 

A similar argument holds if     F     is     DFR    . || 

Using  Karamata's Theorem we obtain Theorem S.6 belov. 

Karamata's  Theorem states that if     0     is continuous and convex and 

a   >  b    ,   then —       —    ' n n 

(5.3) ^(//(aj   >   )il(b.)    . 

i=i i = l 
See Hardy,   Llttlewood,   Prflya(19^^),   p. 89. 

Theorem 5. 6,     Let     (/     be continuous and convex,      X,, X   ,   1 n 

Y,, ..... Y        as in Theorem 5. S.     Then 
1 n 

^(EY.)   >   )^(EX.)    . 

i*l i=l 
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Proof.    let      F     be     IFH    .     3y  Theorem S, S,   (FY   , FY.) 
 — ' n 1 

>   (FX    FX.)    .     Hence by  Karamata's Theorem,   the conclu- 

sion follows.     A   similar argument  holds  it      V     is      DFR     .    I 

Using   Theorem ^. ^   MV obtain 

Theorem S. 7.     Let     c ,  ■     c c ,   X. 
n 1 

, X   .   Y, Y 
n 1 n 

as in Theorem S. S.     Then     1    c    FY     "■    I*    c.FX 
.i        i   -       ,1       i 

i-l i   1 

Proof.    Let      F      be      IFR     .     Defining      d,   =  FY ,    -    FX      .   ,, 
                                                                                       i             n -1 • 1 n -1 «T 

write 

n 

;  c     .^(FY .  -  FX .)   =   (c     - (      Td,    ■   (t      .  -  c       .)(d.   * d.) 
/_    n-i^-l n-i*l n-it-l n n-r    1 n-1 n-^      1 I 

i=l 

♦   (c -  C )(d    '  d     -  d   )••..•   (c        c   Wd [   u-Z n-3M   1 i i' [   I        1M   1 d„.i> 

f   c  (d     t   ...   ^  d   )    . 
11 n 

Since     c.   -  c.       >   0    ,   i = 1 n-1,     d,    ►   . . .  + d    >   0    . 
i i M  - 1 j   - 

j  =  I, . . . . , n-1,     and d. 

n 

\ 

d     ;  0,     we conclude that 
n 

/ c r  i 
/      n- i »I n - i • 1 

i='l 

-  FX .)   >  0    . 
n - 1 ♦ i     - 

A  similar argument  holds  when      F      is      DFH. I| 

Finally  we  sumiian/.e  some   results concerning  the  covanance 

of order  statistics  obtained by Tukey (I'^H).     He   -nows that if      F 

is      IFR    ,   then for      h 

th 

k    ,   cov (X. ,    X, ) < cov(X  . X, )    ,   where 
k        h j       h 

X       is the    j        order  statistic  from      F    .     He furthe.   shows that if 
.) 

F      satisfies  both 

(a) log      F      is concave (i.e.,       F      is      IFR),   and 

(b) log      F      is concave, 
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then 

(1)    the covariance of any two order statistics is less than the 

variance of either,  and 

(Z)    the covariance between order statistics      X.,X.      is mono- 
J      ^ 

tone in     j     and     k     separately,   decreasing as     j      and     k     separate 

from one another. 

Note that if     f     is     PF^    ,   then     F     satisfies both (a) and (b) above. 

Next we derive properties of the spacings     X.,  X-,  - X.,  

X    -  X      .     from     PF,     and      IFR (DFR)     distributions  similar to n n-1 I 

those of the order  statistics      X, < X, < . . .   < X        obtained above. \ —     L — —     n 

We first consider total positivity properties. 

Theorem 5.8.    Let     f     be     PF,     with     f(x)     not neceasarily 0 

for     x < 0    .    Then     h.  ,   the density of     X. -  X.   .    ,   is     PF for 

fixed     i = 2, 3, . . ., n.    If we assume further that     f(x) = 0     for 

x < 0   ,, then     h.     is     PF-,    .   where     h.     is the density ol     X. . 

Proof. 

.i-2. rn-i. 
(5.4) h.(x) = (^^fin.l) |   \ F       (u)f(u)f(u f x) f'^u + x) du 

for     i = 2,3,...,n    . 

Since     f     is     PF,    ,   so is     r(u) = F      (-u)f(-u)    , 

sfu) = f(u) F (u)    .     Hence  so is 

hi(x) = (i-i)!n(n-;fi)! Jr<-U)8<u f x) du 

for fixed     i = 2, 3 n   . 

(5.5) 

Assuming     f(x)  = 0     for   x < 0 ,   w« see that   h.    is    PF?,   from 

h^x)   =  n f(x)F. "^(x)    . 
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Theorem 5.9.     If     F     is     DFR    ,   then      H      is     UFH      for fixed 
  i 

i  = l.^. , n 

Proof.    Since      DFR      is preserved under convex combinations 

(Rrirlow,   Marshall,    Proschan,  1961,   p. JH1) we see from the repre- 

sentation 

'    i-l, (5.6) n i[x) z (1-1)!%-;)!   ^ F1
' <

U)
 

f(u) Fu" (x) du' 

where     F   (x)   = F(u ^ x) ,   DFR      in      x     for fixed     u  ,   that     H.      is 

DFR     for fixed     i   = I, I n. 

Theorem 5. 10.      Let      F     he      I^FR      with      F(x)'   1     for all     x > 0    , 

Then      fT.(x)      is      TP        in      i, x      where      i   = ^,3, . . . , n      and      x > 0. 

Proof.    F       (u) f(u)      is     TP ,      in      i   - l,  i, . . . , n     and     u > 0. 

r (ufx)      is     TP,     in     i,u,   in    i,x,   andin   u,x(u>0,x>0). 

Thus by a theorem     in the book by   Karlin (in process) 

(5.6)                      fl.(x)  -^.^j^.i);     U^^u) f(u) Fn-lfl(u fx) du 

is     TP,      in      i, x    ,   where      i  = Z, 3 n     and     x > 0    . 

Theorem (Karlin)      let     \, x,   C      traverse linear  sets   J^ ,   X ,  ^. 

respectively.     Suppose     h(\, x)  -   \  f(^. x.  r) g(^.C) d|j(^)      is well de- 

fined on     A x X    ,   where     ^     is a    d -finite measure,   and 

(i)     f(X,x , ' ) >  0     for all      \      in     \    ,    x    in     X    ,   and     ^      in 

~   ,   and     f     is      TP-,      for each pair  of variables when ^he third 

variable is held fixed. 

(ii)   g(X.?)     is     'TPZ    . 

Then     h     is      TP, 
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Next  we  present   sotm    majorizatitin properties  oi the     nor- 

m.ui/.ed sparin^s     (n -  i   <   ])(.\    -   X.   .)    ,   i      I, /. n    ,   similar ti 

it'.' se devclf)pe(j above for  the  .irticr   statistu s. 

Theorem  S.ll.       Let      X     ^   X X        be th" order statistics 

from     F    ,   an     IFH     distribution with inc.in     ''    ,   Y,       Y,   -   ...       Y 
t 11- 

' T, 
the ord«. r   statistics from     G(t)       1 -  e       .    Then 

^nX., F(n  -  1)(X ,   -   X.) K(X     -   X      .) 
1 ^1 n n - 1 

>(•')   KnY,. F(n  - 1)(Y ,   -   Y.) K(Y     -  Y     ,)    . 
1 L. [ n n-1 

Proof.       Let      V      be     IFR    .     By   Theorem l.\,   i(n -   i   *  1)(X    -   X       ) 

is decreasing in      i    .    It  is also easy to verify that      FnY. 

= F(n - l)(Y2  -  Yj) 

n 

F(Y     -   Y      .)    .    Since 
n n -1 

n 
\ 

F(n - i   '  1)(X.  -   X.^p   W'-      F(n  - i   v   1)(Y.   . Y.^)   . 

T 1 

it follows that 

F{n -  i   ^   1)(X. 

1 = 1 

^-1^ 
vJ 

F(n  -  .   .  1)(Y.   -  Y.^) 

i-1 

for      j  =  \, I, . . . , n-1    .     Thus the  conclusion follovs. 

A  similar argument holds if       F      is     DP^R. | 

For normalized spacings,   the analogue of Theorem 5. 7 is 

Theorem ^.\l.    Let     c. N  . 

as in Theorem 5.11.    Then 

> c        X     X XYY Y 
n r 

n 
\ 

1=1 

c.FJn-i * 1)(X, - X.j) >    ) c.E(n - i f 

(• ii^i 
^^i^i-i) 
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Proof.    The proof parallels that of Theorem 5.7. 

We immediately obtain: 

Corollary  S. 13.    Let      X., . . . , X   ,¥.,...,¥        be as in Theorem S. 11, r 'n'     1 

Then for      1 ^  r ^ n 

r r 

^ E(n-i f 1)(X. - X.^)   >   ) E(n-i f l)(Yi-  Y.^) 

1=1 i^l 

Proof.    Choose     c,  - c = c     = 1, c     .   = c       . 
r r>1 r ^ c     - 0    , 

n 

so that      c.  > c     > > c 
—     n 

The result follows from Theorem 5. U, 
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